HOW TO PREVENT THE THREE MOST COMMON SAP HACKS

This information is not intended to enable someone to access sensitive information, or carry out activities for which they
are not permitted by the organization. Any use of these techniques is entirely the responsibility of the person doing them.
Instead, the intention is to show those responsible for system and authorization administration some potential risks in their
system and how to mitigate them.

Hack 1: -
Using a program or Function module
call rather than a transaction code

SAP EasyAccess

ervices Network Connector

When a user enters a transaction, either via the command £ Cos Aoplton Componens
field at the top left or from their menu, the SAP kernel i:ﬁfﬁf‘;lim
triggers an authority check against the object S_TCODE oo

[WebClient Ul Framework

for the transaction code entered. This authorization object is
often used to see what someone can doin a system,
or to make sure they can’t run something they’re not

You are not authorized to use transaction SE16N
supposed to. Here we are logged on with a technical user

with very little Functional authorizations. And when they

attempt to run the transaction code SE16N for the data v & B B I B 8 2 [Cacel Morev
browser they receive an error. _ .
Transaction code LBElGN I
Package WusL
But if we look at the transaction code in SE93 we can
see the programit calls (see screenshot to the right).
Transaction text General Table Display
Program RK_SE16N
And I don't necessarily need access to SE93 in this particular Selection screen 1000
system; | could view this on another system. In this case, Start with a;‘
Authorization Object = Values
there isn’'t an additional Authorisation Object linked to
the transaction code, but what interests our hacker is the Classification

Transaction classification

program name. If the program is an executable one .

A look at the code though tells us that the program has been protected:

\/[](— 8 B 72 2 F F % & 2 O @& & X Cancel MoreV

Report RK_SE16N Active
REPORT RK_SE16N.

IF sy-tcode NE 'SE16N'
call function '
exporting
tcode = 'SE16N'
exceptions
ok -
not_ok =
if sy-subrc ne
message e059 (eu) with 'SE1EN'.
endif.
ENDIF.

CALL FUNCTION '

The same S_TCODE check that would happen with the transaction is called at the start of the program code BUT
directly below it | see another way in. The program calls a Function Module, and my technical user has access to test
function modules in SE37:

NE @l g Uy veougging -8 Iest aata airecrory Lancet L (] (2 L¥ wviore v
Test for function group SE16N
Function module SE16N_START

Uppercase/Lowercase

RFC target sys:

Import parameters value
I_TAB Knad]
I_DISPLAY

I_EXIT_SELFIELD_FB
I_SINGLE_TABLE
I_HANA

which gives my hacker the chance to enter a table name and then execute to see the data:

v o | Cancel More
Table to be searched KNAL General Data in Customer Master
Number of hits 500
Runtime 0 Maximum no. of hits T@ 1‘
= 4
Qlll=(=(|Q \4 = 2B B v & Al ||| @ ||| @ Details
Custom...|Cty Name 1 Name 2 City Post.Code Region SearchTerm Street Telephon
1 US B2B Demo Customer 1 PHILADELPHIA 19115 PA 11 113 Germantown Ave (215) 665
2 DE Wett Walldorf 69190 08 WETT Astorstrasse 34
3 DE B2B Demo Customer 3 Walldorf B2B
10 FR DMT Paris 75007 DMT 15 rue des Pivoines
1 FR ALFA Paris 75003 ALFA 14 rue des Acacias
12 FR CAR Courbevoie 92400 CAR 35 rue des roses
13 ES BAT Madrid BAT 15 calle mayor

49 CN Ku Ping Enterprise Co. Ltd Hongkong KU PING

Mitigations

The Ffirst way to protect against this is the effective use of the S_TABU_DIS object. Here | was able to see a table with customer
details but if I tried to view employee data, | was not able to:

axt table No texts

yout

Performance Assistant — 0 x
aximum no. of hits e Maintain entries —
_G 3 =

Client-dependent selection 4

You are not authorized to display this table
Message No. MO419

Diagnosis
Selection Criteria You are either not authorized to perform the desired action or have no

‘ld name 0.. FrValue To value More authorization for this particular object

L : : System Response

The ABAP/4 Dictionary checks your authorization according to the following
| criteria

= Cance X 1. Authorization to perform a particular action
2. Authorization to edit a particular object type (e.g. TABL or INDX efc...)
- . 3. Authorization to edit objects assigned to a particular development class
- You are not authorized to display this table

Procedure

L Check your authorizations and contact your system administrator.

JEit @

But that remediation is specific to the use of a program or function module to gain access to SE16N.

The more important point is to limit developer access in production systems but also ANY system with real data.

This technique could be used to action something the user is not supposed to do in a production system, for example,

release a PO; but if sensitive data is in test systems it could also be used there to gain access to personal data.

An unauthorised user downloading a table of sensitive data and selling it to the highest bidder is unforgivable in the world
today. While more people probably access the production system, you may find people from more organizations accessing your
test and development systems (third parties providing development support or testing services), some of whom may be
accessing the systems from outside of the region, which also means sensitive data accessed there could be classed a data
transfer.

On the few occasions where someone may have to have developer access in production to resolve a critical issue,

make sure you then remove the access as soon as they have investigated the issue. Or alternatively look at an ‘Elevated Rights
Management'’ solution like the one provided by Soterion, or the ‘Firefighter’ functionality of GRC. This would allow the person to
have the required access, but with increased logging of the activities they carry out.

https://www.epiuselabs.com/soterion

Hack 2: Stepping around an authority :

check or changing the result of it ="
For the second hack, let’s continue from where we left off -
with our unauthorized user. We could access table KNA1 = B
via the SE16N function module, but we could not see the B
employee data we were really after. As well as being able e :»

tal Code. \.;:

to test Function modules, we have some debug capability.

Background

Number of Entries 7=

= (B e B

General Data in Customer Master

To value More Output

Alalialiaialiala

o,{o, o, |0, [0, [o, o,

eneray 1ave Uspiay

AllEnties & Cocel (F (1 (3 (3 Moev

Technical name
MANDT
KUNNR
LANDL

NAMEL
NAME2

ORTOL

PSTLZ

REGIO

As soon as we enter the debugger we can put a breakpoint at a statement and enter the AUTHORITY-CHECK statement:

p METHOD / CALCULATE_HASH160 (CL_SRAL_HELPER_RT) +E [[] | SY-TABIX 1
Jesktop 1 Desktop 2 Desktop 3 Standard Structures Tables Objects DetailDisplay Data Explorer Break./Watchpoints
1 method calculate_hashlé0. o ABAP and Screen St
2 data lv_hashlé0 type string.
3 =2 Sta... Stac...|S.. EventTy
= [i Z = 21 | a METHOD
5 cl_abap_message_digest=>calculate_hash_for_char |
€ exporting -
B 20 @ METHOC
z if dat = i_stri
; Lr_cara tsrring =] 19 |& METHOD
8 importing
9 . - & METHOD
10 = Create Breakpoints X =
11 & METHOC
- & FORM
14 ABAP Cmnds Method Function Form Except. Srce Code ST Template Web Dynpro Y oo & METHOC
& FUNCTIC
ABAP Cmnds e & FORM
m T
AUTHORITY-CHECK u) v & FORM
[4 <>
5 § Variables !
This now stops the code at each authorization check:
n -
@ FORM / CHECK_S_TABU_DIS_NAM -8 [[] SY-TABIX |0
Desktop 1 Desktop 2 Desktop 3 Standard Structures Tables Objects DetailDisplay Data Explorer Break.Watchpoints Diff Script
AUTHORITY-CHECK OBJECT 'S _TABU DIS' = ABAP and Screen Stack
ID 'A FIELD lc_display v
ID 'D ' FIELD pd_group. C Sta.. Stac.../S.. Event Type Event Program
1F sy-subrc 2 9 14 & FORM CHECK_S_TABU_DIS_N_SAPLSVD)
pd_ret_act = lc_display.
RETURN., B 13 |& FUNCTION VIEW_AUTHORITY_CHE . SAPLSVI)
E“D‘f o =] 12 |4 FORM AUTHORITY_CHECK SAPLSEL
H 11 & FORM FILL_TC_0100 SAPLSEL
FIELD lc display a 10 | & MODULE (PAl) FCODE_0100 SAPLSELl
ID LAt L D 9 (* PAI MODULE FCODE_0100
IF sy-subrc =
pd_ret_act = lc_display. 8 (™ PAI SCREEN 0100 SAPLSEL
e 7 |4 FUNCTION SE16N_START SAPLSEL
ENDIE. 6 & FORM FUNCTION_CALL SE16N_S
WEEN 1c_display. 5 |& FUNCTION SFCS_FA_FUNCTION_I.. SAPLSEU
€2
I FIELD lc_display
ID D LS' FIELD pd_group.
IF sy-subrc = 0. Variables 1 Variables 2 Locals Globals Auto Memory Al
pd_ret_act = lc_display. I
RETURN.
ENDIF. FEEO0 2 % oW
5 _TAB S... | Variable V.. Val
FIELD lc_display PD_GROUP PA
ID FIELD pd_table. LC_DISPLAY 03

IF sy-subzc
pd_ret_act = lc_display.

The check about to happen is for the table group PA which we don't have authorization for. Our S_TABU_DIS access is limited to group
VA which is why we could see KNA1.

And we can now use the ‘Go to statement’ option to step over the authority check for group PA so it is not called. Or, we can let the
authority check happen and then simply change the return code afterwards.

409 ENDIF. © L= A ouncny vivw Snriociun
ENDIF. 7 d & FUNCTION SE16N_START SAPLSE16N
6 & FORM FUNCTION_CALL SE16N_START=:

WHEN 1c_display.

AUTHORITY-CHECK OBJECT 'S TABU DIS' g £2

ID FIELD lc_display
ip ' LS' FIELD pd_group.
IF sy-subrc = 0. Variables 1 Variables 2 Locals Globals Auto Memory Analysis
pd_ret_act = 1c_display. _—
RETURN.

g == i

S... | Variable V... Val C... Hexadecit

RITY-(JIICK OBJECT 'S TABU NAM' 1
ID 'z PD_GROUP PA ~ 50004100;

FIELD lc_display

- Sl LC_DISPLAY 03 30003300
IF sy-subrc ; r 1
pd_ret_act = lc_display. SY-SUBRC 4 /04000000
RETURN. T 1
428 ENDIF.
7 & FUNCTION SE16N_START SAPLSE16N & LSE16NUOL
. 3 & FORM FUNCTION_CALL SE16N_START======== & SE16N_START========
(=] *5 TABU DIS* L
a1 FII lc_display
4 ' FIELD pd_group.
i) Variables 1 Variables2 Locals Globals Auto Memory Analysis
pd_ret_act = lc_display.
41 RETURN.
a18 t ENDIF. T) -
5 wif the S TABU DIS check fails s e B0 2 % @ i
2 S TABU NAM . S... | Variable V.. Val C... Hexadecimal Value Technical
@ 22
P = FIELD lc display PD_GROUP PA /# 500041002000200020002000. C(14)
2 £ FIELD pd_table LC_DISPLAY 03 30003300 c@)
. r)
a2 lc_display. SY-SUBRC p ~# 00000000 1(4)
- h 3
ENDIF.

And now the code continues as if we were authorized:

v v s S vamm mure v
Table to be searched PA0002 HR Master Record: Infotype 0002 (Personal Data)
Number of hits 500
Runtime 0 Maximum no. of hits
Q|=||=F|Q VIv|E]> #| B v|&E v & v |ul | @] & Detais
PersNo STy. ObjID LI End Date Start Date RNo Changedon Changedby HTx Rf Co SC Re Reserved Field/Unused Field Reserved Field/Unused Field Reserved Field/Unused Field Reserve
1 04102006 10.10.1960 2501.1996 WECKESSER
1 31.129999 05.10.2006 08.10.2010 WEISSANJA
10 31.129999 22.05.1967 07.05.2003 WEISSANJA
69 31129999 01.01.1956 17.09.2003 HOLDERM
70 31.12.9999 01.01.1921 17.09.2003 HOLDERM
7 31129999 0909 1967 30092003 HOLDERM
72 31.129999 08.09.1965 30.09.2003 HOLDERM
73 31.12.0999 09.09.1956 30.09.2003 HOLDERM
100 31.12.9999 02.07.1971 18.11.2013 1300511
101 31.129999 09.12.1969 03.10.2013 1300511

And we have access to names, dates of births, government ID numbers etc.

Mitigations

If someone carries out this activity, you would see the failed authorizations if you were running an authorization trace from STO1, or
if the SM20 audit logging is enabled you would see it there. BUT the best place to monitor for
this sort of activity is the system log SM21:

= a

07.07.2020 11:17:22 ed1_ED1_00 DIA 009 800 NOAUTHS A A23 Goto ABAP Debugger: Source:(413)->(416) | ByteCode:AUTH(
07.07.2020 11:17:22 ed1_ED1_00 DIA 009 800 NOAUTHS O A4 > in program LSVIXU16 , line 0416, event CHECK_S_TABU_DIS_N
07.07.2020 111943 ed1_ED1_00 DIA 009 800 NOAUTHS ® A19 Field contents changed: SY-SUBRC -> 0

07.07.2020 11:19:43 ed1_ED1_00 DIA 009 800 NOAUTHS O A4 > in program LSVIXU16 , line 0416, event CHECK_S_TABU_DIS_N

The first entry at 11:17 is my user stepping over the authorization check, and you can see from the event that this is an
authorization check I've avoided.

The second entry at 11:19 is where we let the check happen, but then changed the return code. In a development system there may
be very valid reasons why someone testing code will change a return code to go into a different branch of code. But again, look at
the eventin the line underneath; that tells us this related to an authorization check.

Automated monitoring of the system logs can also track for these messages. This is a great example of where connecting
SAP to Splunk can be of benefit.

But that is of course finding out after the fact. The main mitigation points here are the same as Hack 1; don't give developer access
in production except in exceptional cases. And even then, be careful with S_DEVELOP as this can allow the stepping from one line of
code to another or changing variables. Better still; take a look at an elevated rights management solution.

And again, don't keep real sensitive data in non-production systems otherwise the same mitigations apply there.

Hack 3: Accessing sensitive data by writing code

The final example is something which has driven some of the landscape management recommendations I've given to clients over the
years, and is solely focused on development and sandbox systems. When someone has the ability to write code, you understand that
with just a little knowledge of the SAP data model, they can access sensitive data from any table and present it on the screen orin

a downloadable form. They are responsible for the authorization checks their code invokes. But most organizations have very little
data in their development client(s), so where’s the risk? Answer: in another client on the same system.

In this example, I am on client 800 which is our development client. But we have used client 900 to test with real data. Now as
the hacker, I am particularly interested in a specific employee for which | know the number but have no access to view data in any
systems. But | overheard that they were using client 900 for payroll testing and no-one except the payroll team had access there.

In client 800:
; cwaga)ow
Display HR Master Data
Cancel [* (T (1 (i Morev
Personnel no i[;u"u'v'.«p'n[j. jf

Core Employee Info. Empl. contract data Gross/net payroll Net payroll P Nass

https://www.epiuselabs.com/cenoti-connect-sap-with-splunk

No data for this employee.

So | decide to write some code:

When the program has a select statement like this,

QPI-USE
< the ABAP interpreter that converts this into an SQL
- g% 8B R oA T 2 20 @ statement for the database actually adds in the field
‘MANDT’ (or in some cases ‘CLIENT' or ‘'MANDANT’)
»ort ZPH_DEMO_EXAMPLE_X_CLIENT Active which is the field on the client dependent table which
REEORT; ZPH DEMO0, EXAMPLE X CLYERT: tells you which client the data is for. So this statement
data: 1 message type ansal. above would automatically be converted to SQL similar

select single ansal from pa0008 where tO:
pernr = ' 4006'
into @1_message.
select single ansal from pa0008 where
write:/ 1 _message.
mandt = sy-mandt and

pernr = ‘10004006’

SY-MANDT being the environment variable that is the client the user is logged on to when the code runs. This happens to ensure the
client segregation of SAP systems, but there is an addition you can use: CLIENT SPECIFIED, which deactivates the automatic client
handling.

This is true for deletions, inserts etc as well.

So by changing the code to:

s ABAP
v 8 % 8§ B 72 % X F B A& 2 0 F @
ZPH_DEMO_EXAMPLE_X_CLIENT Active

REPORT ZPH DEMO EXAMPLE X CLIENT.

data: 1 _message type ansal.

select single ansal from pa0008 CLIENT SPECIFIED where
mandt = 'S00' and
pernr = '10004006"

into @1_message.

write:/ l_message.l

Which then means the OpenSQL created will not try to add SY-MANDT to the where clause itself, but expects the code to provide
the value. And the result....

¢ gnus
I~ all _ .
v |l o Cancel [* (T (1 (& More
L =]
mp
37.000,00

As a user with no access to client 900, | have just gained access to the annual salary (ansal) from infotype 8 of an employee that only
exists there.

Mitigations

I have worked with some organizations that only provide a developer key for a fixed period, and then it has to be renewed;
but I would say it makes sense to consider who is given developer keys, and ensure it is limited to those people only.

The most important point here is that sensitive data in any client of a system that allows repository changes is a very dangerous
thing to allow. If someone from Payroll does need to test in a development client, then remove the data straight afterwards.
EPI-USE Labs’ Object Sync™, which you might have used to move the data there, has a deletion utility too; and there is a SAP
standard deletion program for employee data. The Object Sync deletion utility can even be scheduled periodically to delete all
employee data in a client. Otherwise, ensure the data is masked, potentially even salary values, keeping in mind that does negate
the data for accurate Payroll testing. Ideally though, just find a client on a QA or other system which does not allow repository
changes, and use that for any real data testing that needs to be carried out.

And still mask the data that can be masked without affecting the tests.

ZAbS
Paul Hammersley epiuselabs.com 14 Facebook LinkedIn
paul@labs.epiuse.com

@PI-USE K
Our software, your advantage MR

value through innovation

https://www.epiuselabs.com/object-sync
mailto:paul@labs.epiuse.com
https://www.epiuselabs.com/
https://www.facebook.com/epiuselabs/
https://www.linkedin.com/company/2262920/admin/

